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ABSTRACT
Trisomy 21 is the most common genetic disorder seen 

among infants, and it causes spontaneous abortions, 
abnormal neural development and other pathologies 
associated with newborn development. In newborns with 
this trisomy, 90-95% have full trisomy, 1.4-1.9% have 
mosaicism, and 1-4.7% have translocations. The principal 
cause of trisomy 21 is advanced maternal age, in which 
recombination errors may occur during fetal development, 
age-related accumulation of damaged DNA, cohesin 
degradation producing the premature loss of chromosomes 
or sister chromatids, and alterations during the spindle 
formation process. The paternal age has also an effect 
on trisomy 21, specifically during male aging, when there 
is higher risk of chromosomal breaking in spermatozoa. 
Epigenetics is also an important risk factor of trisomy 21 
through changes in the DNA methylation process, histone 
modification and non-coding RNAs. Assisted reproductive 
technologies (ART) have emerged in recent years as a 
safe alternative for couples with fertility problems. These 
techniques, which include controlled ovarian stimulation 
(COS), in vitro fertilization (IVF), intracytoplasmic sperm 
injection (ICSI) and vitrification, decrease the incidence 
of aneuploidy in human preimplantation embryos, and 
are widely used. The following study aims to review and 
discuss the available literature on trisomy 21 in the field of 
assisted human reproduction.
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INTRODUCTION
The human genome is organized into 23 pairs of chro-

mosomes, with approximately 21,200 protein-encoding 
genes that will determine the phenotypic and genotypic 
characteristics of an individual (Pertea et al., 2018). Chro-
mosomal abnormalities, involving the number of chro-
mosomes (aneuploidy) or their structure (translocations, 
inversions) may translate into implantation failure, mis-
carriages, congenital defects, malformations, non-viable 
embryos, etc. (Nagaoka et al., 2012; Gug et al., 2019).

One of the main causes of aneuploidy involves chro-
mosomal nondisjunction during meiosis as part of game-
togenesis and in the first stages of embryo development 
(Takaesu et al., 1990; Pellestor et al., 2005; Orr et al., 
2015). Trisomies are the most common type of aneuploidy 
and are responsible for approximately 50% of spontaneous 
abortions, of which those involving chromosomes 16, 21 
and 22 are the most prevalent (Hassold & Hunt, 2001; Li 
et al., 2017).

Trisomy 21 or Down Syndrome was first described in 
1866 by John Langdon Down (Down, 1995), but it was not 
until 1959 that Jerome Lejeune demonstrated the link be-
tween the disorder and the extra copy of chromosome 21 
(Lejeune et al., 1959; Mills et al., 2011; Kurtovic-Kozaric et 
al., 2016). Down Syndrome is the most common aneuploidy 

in newborns, with an incidence of 1:700 – 16:10000 in live 
births (Weijerman & de Winter, 2010; Oster-Granite et al., 
2011). It presents the distinctive phenotypes of the dis-
order, such as brachycephaly, brachydactyly, wide hands, 
duodenal atresia, epicanthic folds, clinodactyly of the fifth 
digit, flattened nosebridge, hypotonia, mental retardation, 
Alzheimer’s disease, short stature (Roizen & Patterson, 
2003), as well as characteristics that vary from case to 
case; like hypogonadism, cryptorchidism, cardiac malfor-
mations and leukemia (Coppedè, 2016).

Approximately, 95% of trisomy 21 babies have it be-
cause of maternal nondisjunction during meiosis, while 4% 
are due to a parental balanced Robertsonian translocation 
between chromosomes 13 or 14 and 21. The remaining 
1% of Down Syndrome cases are caused by postzygotic 
mitotic nondisjunction (Witters et al., 2011). Mosaicism in 
Down Syndrome, in which not all cells have trisomy 21, 
has been reported to occur in 2-4% of cases. Mosaic Down 
Syndrome can be found in two categories, according to the 
proportion of trisomic cells present in the individual: high 
grade (80-90% trisomic cells) and low grade (0.1-38% tri-
somic cells) (Hultén et al., 2013).

Presently, there are several diagnostic methods with 
different specificities and sensibilities to detect trisomy 
21 during the prenatal stage (Rink & Norton, 2016; Van 
Opstal et al., 2016; Ye et al., 2013); in addition to pre-im-
plantation genetic testing for aneuploidies (PGT-A), which 
seeks to identify preimplantation embryos with abnormal 
chromosome numbers during IVF, and determine the risk 
factor of developing an aneuploidy-related disorder.

The present study pays particular attention to trisomy 
21, its causes, incidences and risks in couples undergoing 
assisted reproduction procedures.

GENETIC BASIS FOR TRISOMY 21
In Down Syndrome cases, 90-95% of patients have 

the full trisomy, 1.4-1.9% have mosaicism and 1-4.7% 
have translocations (Devlin & Morrison, 2004; Shin et al., 
2010; Chiang et al., 2012; Zhu et al., 2013; Iwarsson et 
al., 2015; Flores-Ramírez et al., 2015; Karmiloff-Smith et 
al., 2016).

Full trisomy ensues during chromosome nondisjunc-
tion in meiosis I (84-86% of patients), or during chroma-
tid segregation in meiosis II (14% of patients) (Hassold 
& Hunt, 2001; Patterson, 2009; Vraneković et al., 2012). 
Nondisjunction occurs when chromatids of homologous 
pairs fail to segregate to the opposite poles of the mitotic 
spindle during meiosis, and can be due to a reduction in 
the number of chiasmata between pairs of homologs, fail-
ure to resolve chiasmata between homologous pairs during 
anaphase I, and individual chromatid segregation during 
anaphase I, as opposed to whole chromosome segregation 
(Henderson & Edwards, 1968; Hassold & Hunt, 2001).

Mitotic errors after fertilization are the principal cause 
of embryonic mosaicism (Petersen & Mikkelsen, 2000), 
and can occur in 15-90% of all human embryos during 
the preimplantation stage (Rubio et al., 2007). Depending 
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on which stage the mitotic error occurs, mosaicism can 
be generalized or tissue-specific (Dumanski & Piotrowski, 
2012; Papavassiliou et al., 2015). Generalized mosaicism 
has its roots in a mitotic error before cellular differentia-
tion, during the first day of embryonic development (65-
70% of cases) (Wells & Delhanty, 2000; Mertzanidou et 
al., 2013). On the other hand, tissue-specific mosaicism 
occurs after cellular differentiation, with an incidence of 
approximately 50% in embryos with 4-8 blastomeres, and 
10% in the inner cell mass of blastocysts (Evsikov & Verlin-
sky, 1998). Both generalized and tissue-specific mosaicism 
are originated by the same mechanisms: chromosomal 
nondisjunction, anaphase lagging (trisomy rescue), en-
doreplication or uniparental dissomy (Taylor et al., 2014).

In patients with mosaic Down Syndrome, the number 
of trisomic cells in several tissues and cells is related to the 
phenotypic manifestations (Modi et al., 2003; Papavassil-
iou et al., 2009). Respectively, mosaicism can be of high 
grade, in which patients have a high proportion of trisomic 
cells (80-90%) with distinctive Down Syndrome character-
istics; or low grade, in which there is a low ratio of trisomic 
cells (0.1-38%), and the syndrome is not phenotypically 
perceptible (Hultén et al., 2013). The severity of genotypic 
and phenotypic characteristics in mosaic Down Syndrome 
will depend on the grade of mosaicism displayed at the 
cellular and histological levels, that is to say, patients with 
mosaic trisomy 21 could show a similar phenotype to those 
with non-mosaic trisomy, or even could show no pheno-
type at all (Papavassiliou et al., 2009).

In cases of trisomy 21 caused by translocations, the 
rearrangement involves Robertsonian rearrangements be-
tween the long arm of chromosome 21 (q21) and another 
acrocentric chromosome (Hultén et al., 2008), with chro-
mosomes 14, 15, 22 or even the homolog of 21, being the 
most common (Kusre et al., 2015; Kalpana et al., 2017; 
Yan et al., 2017).

Full trisomy, mosaicism and translocations can origi-
nate from the alteration of the spindle assembly check-
point (SAC), a protein complex that is responsible for 
regulating mitotic division via a feedback-control system 
(Musacchio, 2015). SAC specifically blocks the onset of 
anaphase through the inhibition of the anaphase-promot-
ing complex/cyclosome (APC/C), until achieving chromo-
some attachment to the mitotic spindle at the metaphase 
plate. Once the spindle checkpoint requirements are met, 
the APC/C gets activated, causing the cleavage of cohes-
ins that keep sister chromatids together (Pines, 2006; 
Lara-Gonzalez et al., 2012; Gorbsky, 2015). Accordingly, 
any disturbance to the SAC could result in the perpetuation 
of cell division in the presence of abnormal segregation 
of sister chromatids. Several other proteins and genes in-
volved in these control mechanisms of cell division have 
been described, and they could be altered by factors such 
as aging, stress and temperature, leading to higher risk of 
chromosomal abnormalities (Santaguida & Amon, 2015).

MATERNAL EFFECT ON TRISOMY 21
The process of gametogenesis in males and females 

has the same molecular basis, but variable predisposition 
to chromosomal defects. High incidence of aneuploidies are 
most commonly reported in oocytes, pertinent with the na-
ture of oogenesis, which is substantially longer than sper-
matogenesis, occurs during both pre- and post-natal peri-
ods,  and has a prolonged state of arrest during prophase 
I, between the fetal stage until the onset of puberty, thus 
increasing the probabilities of an error to occur during the 
segregation of homologous chromosomes (Oliver et al., 
2008), or sister chromatids (Karmiloff-Smith et al., 2016).

The main causes of trisomy 21 include alterations in 
recombination, chromosomal nondisjunction and aging.  
Recombination promotes proper chromosomal orientation 

by the spindle apparatus to ensure subsequent separa-
tion towards opposite poles during anaphase. Absent or 
reduced recombination poses a risk for nondisjunction that 
disregards the age factor (Oliver et al., 2012). Nondisjunc-
tion of chromosome 21 can occur during meiosis I, mei-
osis II or during the first mitotic divisions of the embryo. 
Cases associated with nondisjunction during meiosis I are 
the most common, and may be associated with a lack of 
telomeric exchange, irrespective of maternal age (Lamb et 
al., 2005; Oliver et al., 2008; 2012). In contrast, in meiosis 
II, the number and localization of recombination hotspots 
(chiasmata) between chromosome 21 homologs are pre-
disposed to abnormalities in an age-dependent manner, 
and enriched pericentrometric chromosomal exchanges 
are prevalent in older women (Oliver et al., 2008; Ghosh 
et al., 2009).

The molecular basis for the relationship between ma-
ternal age and predisposition to a trisomy 21 pregnan-
cy is not clear. However, there is evidence that links the 
development of aneuploidies to advanced maternal age: 
recombination errors that occur during the fetal develop-
ment of the mother, age-related accumulation of damaged 
DNA, cohesin degradation during dictyate that can lead to 
the premature loss of chromosomes or sister chromatids 
(Duncan et al., 2012) and alterations in the SAC during the 
spindle formation process, inevitably leading to the delay 
of cell division (Hauf & Watanabe, 2004; Tanaka, 2005; 
Touati & Wassmann, 2016). A weakened SAC would lead 
to the premature onset of anaphase prior to chromosomal 
attachment to the spindle microtubules, thus leading to 
potential errors in chromosome segregation (Galander et 
al., 2019). Likewise, it has been demonstrated that aging 
also has a negative effect in the concentration of cohesion 
and inhibin proteins, which are part of the SAC, and play 
a key role in normal cell division patterns (Duncan et al., 
2012; Nabti et al., 2017).

Late motherhood is one of the main causes of infertility 
in women, leading to higher risks of aneuploidies during 
pregnancy (Allen et al., 2009). Trisomies are the most fre-
quent chromosomic alterations observed in older pregnant 
women (Chiang et al., 2012). Starting at 35 years of age, 
the quantity and quality of oocytes begins to decrease 
drastically, and the risk of aneuploidies during pregnancy 
increases ten-fold in women over 40 years compared to 
women under the age of 25 years (Hassold & Hunt, 2001). 
Despite being the most studied factor in the nondisjunction 
of chromosome 21, advanced maternal age may not be 
the sole culprit, thus exacerbating the need for multidis-
ciplinary approaches that may reveal links with molecular 
mechanisms, environmental factors, lifestyle patterns and 
socioeconomic conditions (Saiyed et al., 2018).

In Trisomy 21 Mosaicism: We May All Have a Touch 
of Down Syndrome Hultén et al. (2013) concluded that 
mosaicism of chromosome 21, in specific tissues and with 
variable trisomic cell proportions, is a shared characteristic 
in most, if not all of the general population. Considering 
that one may find trisomic cells in a population of fetus-
es with normal phenotype, the oocyte mosaicism selection 
model emerges, suggesting a different sexual prevalence 
of mosaic trisomy 21 in germinal lines, with much higher 
incidence in fetal ovaries than in the testes. Correspond-
ingly, mitotic errors can emege prior to the oocyte enter-
ing meiosis, with the possibility of onset of aneuploidies in 
primordial follicles.

PATERNAL EFFECT ON TRISOMY 21
Spermatogenesis is a perpetual process that extends 

from puberty until old age. The cycle to produce one hap-
loid spermatozoon can last 46-76 days, resulting in mi-
nor temporal tension on the gamete and lower risk of 
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chromosomal abnormalities (compared to oogenesis) 
(Heller & Clermont, 1963; 1964; Misell et al., 2006). Ac-
cordingly, the incidence of trisomy 21 in sperm is lower 
than that seen in oocytes. In addition to the discrepancy 
in duration of spermatogenesis and oogenesis, lower inci-
dence of paternal trisomy 21 may also be due to the exis-
tence of a post-meiotic checkpoint in spermatogenesis, in 
which aneuploid spermatids or spermatozoa are arrested 
(Uroz & Templado, 2012).

Nondisjunction in spermatogenesis and oogenesis can 
be due to similar mechanisms, such as failure to resolve 
chiasmata between homologous chromosomes during 
anaphase I, absence of chiasmata between homologues 
that prevents appropriate chromosomal segregation, and 
the premature separation of sister chromatids during 
anaphase (Jones, 2008; Fragouli et al., 2011).

During spermatogenesis, the most commonly occurring 
abnormalities involve dissomies in secondary spermato-
cytes, as opposed to trisomies in primary spermatocytes. 
Futhermore, there is evidence of a higher number of chro-
mosomes without recombination hotspots during meiosis 
I, which is associated with abnormal segregation of chro-
mosome 21 (Oliver et al., 2009), and errors during meio-
sis II (Uroz & Templado, 2012). Secondary spermatocyte 
disomy is primarily caused by the absence of chiasmata of 
meiosis I chromosomes and errors during segregation of 
bivalents with reduced numbers of chiasmas, thus result-
ing in diploid spermatozoa and aneuploid embryos (Ego-
zcue et al., 2000; Munné et al., 2007; Magli et al., 2009).

According to Iwarsson et al. (2015), the probabili-
ty of a trisomic pregnancy caused by a spermatozoon 
with twice as many chromosomes 21 is less than 1 in 

800 pregnancies. Contrastingly, the percentage of aneu-
ploid embryos is higher in male-factor infertile patients 
(oligoasthenoozoospermia or non-obstructive azoosper-
mia) than in infertile patients with a normal male factor 
(Magli et al., 2009).

The link between paternal age and trisomy 21 has 
not been fully elucidated and continues to be controver-
sial. However, studies by Carrasquillo et al. (2019) and 
Thompson (2019) showed that there was no significant 
association between advanced paternal age and trisomy 
21; whereas Sotonica et al. (2016), García-Ferreyra et al. 
(2018), and Corona-Rivera et al. (2019) demonstrated 
that older fathers have a higher risk of Down syndrome 
pregnancies compared to younger fathers (Figure 1). Like-
wise, Templado et al. (2011) and Sotonica et al. (2016) 
revealed that paternal age is associated with an increased 
risk of chromosomal breaking in spermatozoa, leading to 
translocations commonly associated with trisomies.

When the grade of mosaicism in germline cells of male 
fetuses is evaluated, it is apparent that, in comparison to 
germline cells of the ovary, the percentage of cells with 
trisomy 21 is low. This finding is associated to stricter and 
selective control during cellular division in the testicles 
(Hultén et al., 2008; 2010), thus resulting in higher inci-
dences of maternal influence in Down syndrome cases. On 
the other hand, unlike individuals with more serious cases 
of trisomy 21 who are considered infertile, individuals dis-
playing mosaicism may pass on their condition or even be 
the direct cause of a serious trisomy 21 pregnancy. Never-
theless, more studies that illustrate the molecular mech-
anisms behind mosaicism in both paternal and maternal 
backgrounds are needed to corroborate such findings.

Figure 1. Percentages of embryos with trisomy 21, 18 and 13 in men ≤39 years, 40-49 years and ≥50 
years. Source: García-Ferreyra et al. JBRA Assist Reprod. 2018.
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EPIGENETIC EFFECT ON TRISOMY 21
Down syndrome is a gene expression disorder, involv-

ing 200-300 genes encoded in chromosome 21 (Hattori et 
al., 2000). The presence of an extra chromosome (partial 
or total) could lead to gene over expression (Weber et al., 
2016). According to the “gene dosage effect” hypothesis, 
some of the features of Down syndrome could be direct-
ly explained by the dosage imbalance of HSA21 genes 
(Lyle et al., 2009). The extra chromosome 21 imposes a 
trans-acting effect in other chromosomes that cause epi-
genetic changes, including differential CpG methylation in 
specific sets of downstream target genes (Do et al., 2017).

Epigenetics encompasses the understanding of her-
itable changes in gene expression or cellular phenotype, 
without changing the underlying DNA sequence (Bird, 
2007; Deans & Maggert, 2015), with the principal mech-
anisms to alter DNA expression being methylation and 
acetylation. DNA methylation is related to the addition of a 
methyl group to cytosine bases, generally located in CpG 
dinucleotides (Ball et al., 2009), by the DNA methyltrans-
ferase (DNMT) family of enzymes (DNMT1, DNMT3A and 
DNMT3B); whereas demethylation is mostly catalyzed by 
the ten-eleven translocation (TET) enzymes (TET1, TET2 
and TET3) (Gensous et al., 2019), by action of DNA meth-
yltransferase enzymes (DNMT1, DNMT3A Y DNMT3B) (Cic-
carone et al., 2018a).

Gensous et al. (2019) have reported marked DNA 
methylation alterations in cells of patients with trisomy 21, 
being hypermethylation and genome-wide perturbance of 
DNA methylation the most prevalent findings. Likewise, low 
levels of TET enzymes, which may cause hypermethylation 
through decreased DNA demethylation have been reported 
(Jin et al., 2013; Ciccarone et al., 2018b), in addition to the 
disturbance of the metabolic network that produces S-ad-
enosylmethionine (SAM); which is crucial in DNA methyla-
tion as the universal donor of the methyl group (Ball et al., 
2009; Obermann-Borst et al., 2011; Obeid et al., 2012).

Several studies have suggested an epigenetic origin as 
a possible cause to the different pathologies in Down syn-
drome patients, involving changes in the DNA methylation 
process, histone modification and non-coding RNAs, which 
have an important role in gene expression in immune and 
central nervous systems diseases (Teipel & Hampel, 2006; 
Jones & Lane, 2013; Sailani et al., 2015; Wiseman et al., 
2015). Patients with trisomy 21 show premature aging 
(Patterson & Cabelof, 2012), particularly in the immune 
and central nervous systems (Lott & Head, 2005; Teipel & 
Hampel, 2006). Several biological hallmarks of aging have 
been established, such as DNA damage buildup (López-
Otín et al., 2013), telomere shortening (Jenkins et al., 
2006), loss of the proteostasis network (Aivazidis et al., 
2017), oxidative stress and mitochondrial disfunction (Pa-
gano & Castello, 2012). These biological hallmarks, along 
with the epigenetics markers represent a new type of mo-
lecular marker of aging, described as a modern ‘epigene-
tic clock’ and based on DNA methylation levels (Horvath, 
2013).

ASSISTED REPRODUCTION AND TRISOMY 21
Ovarian stimulation
In the last years, there has been a substantial increase 

in the age in which women decide to get pregnant, by pro-
fessional or personal decisions, and this delay reduces their 
possibility to achieve a spontaneous pregnancy and carry 
a healthy baby for a full term (Munné et al., 1995; Nybo 
Andersen et al., 2000; Radoń-Pokracka et al., 2019). As a 
result, more and more women are turning their attention 
to assisted reproduction alternatives (Mills et al., 2011). 
Achieving an advanced-age pregnancy; however, this also 
increases the onset of chromosomal abnormalities like 

trisomy 21. In Europe, the last decade has been witness 
to a 10% increase in trisomy-21 pregnancies, all linked to 
higher maternal age (Loane et al., 2013).

Controlled ovarian stimulation (COS) with exogenous 
urinary or recombinant gonadotropins maximizes the 
number of oocytes yielded to overcome the high rate of 
attrition of gametes and embryos during an IVF treatment. 
Check (2007) suggested that COS could influence oocyte 
maturation and the completion of meiosis; potentially me-
diating chromosomal aneuploidy and mosaicism. Howev-
er, all prior human studies investigating the effect of COS 
on embryonic aneuploidy screening a limited number of 
chromosomes and using fluorescent in situ hybridization 
analysis of blastomeres from day-3 embryos (Baart et al., 
2007; Weghofer et al., 2008), have been demonstrated to 
have suboptimal diagnostic accuracy.

The advent of better assisted reproductive technolo-
gies has seen a rise in the use of blastocyst cultures and 
trophectoderm biopsies in embryology laboratories world-
wide. These techniques enable natural embryonic selec-
tion through the extended culture of the blastocyst or the 
screening of several trophectoderm cells and 24-chromo-
somes. When taking into consideration the possible nega-
tive effects of COS during the aforementioned techniques, 
Sekhon et al. (2017) and Thorne et al. (2019) did not re-
port a significant difference in aneuploidy rates. Likewise, 
Barash et al. (2017) showed that different doses of gonad-
otropins had no effect on the clinical pregnancy of wom-
en undergoing an IVF procedure. Finally, Wu et al. (2018) 
evaluated the effect of gonadotropins in two groups of pa-
tients: <35 and ≥ 35 years old, and showed that the aneu-
ploidy rate was 40% in younger patients and 59% in older 
patients. Higher doses did not increase the aneuploidies 
rates in blastocysts within the same age group.

In vitro fertilization
The frequency of aneuploidies in human preimplan-

tation embryos generated during IVF oscillates between 
56% and 84% (Fragouli et al., 2014), and its occurrence 
is related to gamete quality (Coates et al., 2013), mater-
nal and paternal ages (Dailey et al., 1996; Fragouli et al., 
2014; García-Ferreyra et al., 2015; 2018) and not with 
the procedure itself. Several authors have showed that 
the prevalence of aneuploid pregnancies in IVF procedures 
are similar to those observed in spontaneous pregnancies 
(Bingol et al., 2012; Pendina et al., 2014; Qin et al., 2013).

Morphological examination of oocytes during an IVF 
is subjective and does not allow the true assessment of 
the cytoskeleton and general physiology of the oocyte. 
Accordingly, it has been previously suggested that poor 
morphological quality may be related to the emergence of 
aneuploidies during embryonic development (Dolgushina 
et al., 2015; Lubis et al., 2017). Furthermore, depending 
on maternal age, the quality of the oocyte differs, which in 
turn may increase the probabilities of chromosomal abnor-
malities (Cimadomo et al., 2018). Aneuploidies have also 
been reported to be linked to meiotic arrest and cessation 
of gamete production in men, resulting in oligozoosper-
mia or even azoospermia (Andreescu et al., 2016); and al-
though trisomy 21 could have paternal origins (albeit with 
a lower incidence), alterations in the quality of the seminal 
sample may favor a higher incidence of aneuploid embryos 
(Coban et al., 2018).

Advanced age in couples may represent a major cause 
of infertility and a reason to explore assisted reproduc-
tion treatments to achieve pregnancy. It is well established 
that aneuploidy is present in embryos from infertile pa-
tients and dramatically increases with maternal age, from 
73% in patients 35 years or younger, to 87% in patients 
41 years or older (Fragouli et al., 2014). In regards to 
paternal age, García-Ferreyra et al. (2018) evaluated the 
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aneuploidy rates in embryos obtained from egg donations, 
showing that men ≥ 50 years old generated significantly 
more aneuploidy embryos compared to younger men; and 
10.9% of their embryos had trisomy 21 compared to 6.1% 
and 2.5% in men <39 years and 40-49 years, respectively. 
Therefore, advanced age in women and men significantly 
reduces the probability to obtain at least one euploid em-
bryo (Ata et al., 2012), and increases up to 91.7% the 
possibility to obtain aneuploidy embryos during in IVF pro-
cedure (Su et al., 2016).

Assisted reproduction techniques are based on the 
insemination of occytes in the laboratory setting, being 
IVF and ICSI the most commonly sought after proce-
dures. When comparing blastocysts obtained from IVF and 
ICSI treatments with normal male factor, De Munck et al. 
(2020) found similar euploid rates in both techniques (IVF: 
49%; ICSI: 44%); and when evaluating the incidence of 
aneuploidies in chromosome 21, the authors showed that 
25.8% of embryos from IVF were trisomic, compared to 
20.3% of embryos from ICSI. Currently, there is no pub-
lished evidence associating ICSI with the incidence of tri-
somy 21.

There are several factors (maternal and paternal age, 
gametes quality, cause of infertility, etc) that could in-
crease the percentages of embryos with trisomy 21 gener-
ated during an IVF treatment and thus, to cause a higher 
prevalence of trisomy 21 babies. However, many of these 
trisomic embryos do not implant or are eliminated ear-
ly after implantation. In cases of fertile younger women, 
Munné et al. (2017a) analyzed the external factors that 
affect euploidy in embryos from egg donor cycles made in 
different fertility centers in USA, demonstrating that the 
aneuploidy rates oscillate between 17-60%. 

Cryopreservation
The cryopreservation of oocytes and embryos is a tech-

nique that, due to its utility and popularity, plays an im-
portant role in assisted reproductive technology (Nagy et 
al., 2014). Ever since the first pregnancy and subsequent 
birth of cryopreserved oocytes and embryos (Trounson & 
Mohr, 1983; Zeilmaker et al., 1984; Chen, 1986), differ-
ent protocols have emerged, differing in the type and con-
centration of the cryoprotectant, equilibration time, cool-
ing rate and cryopreservation devices. Nonetheless, two 
of these protocols have been referenced the most in the 
last decades: slow freezing and vitrification (Edgar & Gook, 
2012). Cryopreserving blastocysts via vitrification has im-
proved success rates compared to slow freezing (Abdel-
Hafez et al., 2010), with different survival rates (93% vs. 
73%), implantation rates (33% vs. 26%) and clinical preg-
nancy rates (65% vs. 55%) (Bernal et al., 2008). Thus, 
vitrification is highly preferred and has seen a dramatic 
increase in assisted reproduction laboratories worldwide 
(Levi-Setti et al., 2016).

During the processes of freezing and thawing, the oo-
cyte undergoes physical and physiological changes (Gard-
ner et al., 2007) that may induce alterations in the segre-
gation of chromosomes during meiosis II (Nottola et al., 
2007; Noyes et al., 2009). Huang et al. (2007) demon-
strated that the integrity of the mitotic spindle during chro-
mosome alignment in cryopreserved mice oocytes was less 
compromised when vitrification was used. However, both 
slow freezing and vitrification had similar percentages of 
embryonic aneuploidies. In humans, it has been shown 
that vitrification does not increase DNA or mitotic spindle 
damage in oocytes, nor aneuploidies in the embryo (For-
man et al., 2012; García et al., 2011; Zhang et al., 2015).

Oocyte vitrification and long term storage does not af-
fect the percentage of euploid blastocysts obtained after 

an IVF or ICSI cycle (44.5% vs. 47.6% in fresh oocytes) 
(Goldman et al., 2015). In the same manner, cryopreser-
vation enables the buildup of a higher number of oocytes 
to increase the number of available euploid embryos in 
a single cohort (Chamayou et al., 2017), and when vit-
rification is chosen due to social connotations in younger 
women, the risk of trisomy 21 related to maternal age de-
creases, as seen in cases that use oocytes obtained from a 
cryobank (Cobo et al., 2010).

TRISOMY 21 DIAGNOSIS
The diagnosis to determine if an individual has an extra 

copy of chromosome 21 can be achieved in three differ-
ent stages. In the postnatal stage, a confirmatory diag-
nosis is based on the anatomical characteristics and on 
the blood karyotype of the patient. In the prenatal stage, 
non-invasive studies may be implemented, such as hor-
mone and DNA analysis of the mother (Ho et al., 2003; 
Yang et al., 2003; 2006), but a more accurate diagnosis re-
quires invasive procedures, such as amniocentesis, chronic 
villus sampling or umbilical blood sampling. On the other 
hand, assisted reproduction techniques have enabled the 
cytogenetic evaluation of embryos prior to implantation, 
thus making embryonic selection more efficient (Munné et 
al., 2004) when compared to embryos selected by their 
morphological quality (up to 80% of blastocysts with “ad-
equate” morphology can present trisomy 21) (García-Fer-
reyra et al., 2018). In the preimplantation stage and during 
the first days of embryonic development, a biopsy of 1 or 
few embryonic blastomeres can be taken (one cell at day 
3 or 5-10 cells trophoblast at days 5-6) and an embryonic 
culture based on IVF techniques can be made.

In the last years, the preimplantation genetic testing 
for aneuploidies (PGT-A) with blastomere biopsy (cleavage 
stage) has been replaced by trophectoderm biopsy (blasto-
cyst stage), due to problems associated with single cell analy-
sis, both technical (e.g., high rate of amplification failure), and 
biological as chromosomal mosaicism, namely, the presence 
of cells with different karyotypes within the same embryo, 
seems to reach its highest level at this stage of preimplan-
tation development (Voullaire et al., 2000; Bielanska et al., 
2002). In regards to clinical outcomes, there are several stud-
ies showing the ineffectiveness and potential impairment of 
cleavage stage biopsy, including the review and meta-analy-
sis of Mastenbroek et al. (2011) which highlighted the failure 
of preimplantation genetic screening when conducted by 9 
chromosome FISH on biopsied blastomeres.

PGT-A with blastocyst stage biopsy strategy was re-
ported for the first time by de Boer et al. (2004) and the 
first live births were reported by Kokkali et al. (2005) and 
McArthur et al. (2005), and compared to biopsy at cleav-
age stage, the power of this strategy resides in its high-
er technical and biological robustness, lower influence of 
procedural errors and lower impact of mosaicism on the 
molecular analysis. Studies by Scott Jr et al. (2012) com-
paring the ongoing pregnancy between trophectoderm and 
blastomere biopsy approaches, confirm the higher reliabil-
ity of blastocyst stage analysis with respect to cleavage 
stage one (48.2% versus 29.2%, p=0.001).

In regards to amplification technologies to detect aneu-
ploidies, many platforms are used for PGT-A as Single-Nu-
cleotide Polymorphism (SNP) testing, array-based Compar-
ative Genomic Hybridization (aCGH), and Next-Generation 
Sequencing (NGS). Each platform has its own advantages 
and limitations. SNP array detects segmental mutation, 
parental origin of monosomy and trisomy, DNA fingerprint-
ing to prevent misdiagnosis caused by contamination, and 
mosaicism but it is more technically complex and needs 
a longer turnaround time. On the other hand, aCGH can 
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also detect unbalanced translocation from parental Rob-
ertsonian, reciprocal translocation carriers and mosaicism, 
but with a lower sensitivity than NGS. NGS platforms have 
become increasingly popular in PGT-A because of their 
high throughput, their ability to precisely detect mosaicism 
and segmental mutation, and their capability of concomi-
tant PGT-A and monogenic disorders. Huang et al. (2016) 
validated the NGS platform in blastocysts, demonstrating 
that among the aneuploid embryos identified by aCGH, 
re-biopsied and rechecked by NGS showed high positive 
(97.6%) and negative (99.6%) predictive values of aneu-
ploidy assignment compared with the SNP array. Addition-
ally, Friedenthal et al. (2018) showed that the use of NGS 
increased the ongoing pregnancy and live birth rates of a 
single frozen-thawed euploid embryo compared to aCHG.

Mosaicism in embryos is characterized by the presence 
of two or more genetically distinct cell lineages, typically 
one with a chromosome abnormality and the other showing 
a normal chromosome constitution (Spinella et al., 2018). 
Recent studies have suggested that diploid/aneuploid mo-
saicism in blastocysts is relatively uncommon (4-6%) and 
a preferential segregation of mosaicism did not occur in 
the inner cell mass of the trophectoderm (Capalbo & Rien-
zi, 2017; Capalbo et al., 2017). In regards to reproduc-
tive outcomes after transfer of mosaic blastocysts, Mun-
né et al. (2017b) showed lower implantation rates (53% 
versus 70%) and higher miscarriage rates (25% versus 
10%) compared to euploid blastocysts, but the authors 
also showed that 41% of mosaic embryos can produce an 
ongoing implantation.

Currently, non-invasive preimplantation genetic testing 
has become more relevant and successful, with 80-90% 
success rate as it is concordant with embryonic biopsies 
(Liñán et al., 2018; Capalbo et al., 2018) that analyses 
embryonic DNA present in the culture medium. However, 
due to its novelty, further studies are required to evaluate 
its concurrence with the detection of genetic abnormalities 
like trisomy 21 (PGT-A can confirm an aneuploidy with up 
to 96% concordance) (Victor et al., 2019).

CONCLUSION
In humans, the trisomy 21 or Down Syndrome caus-

es spontaneous abortions, abnormal neural development 
and other pathologies associated with newborn develop-
ment. Depending on the severity of the genetic insult, 
the disorder can present itself as: a full trisomy (every 
cell presents a full extra copy of chromosome 21, the 
most common type), a translocation (one of the three 
chromosomes 21 is attached to another chromosome) or 
mosaicism (some cells have 3 copies of chromosome 21 
and some are normal). However, unless a genetic study 
is done on the patient, telling these three types apart 
cannot be done phenotypically. The literature on trisomy 
21 is vast and has highlighted advanced maternal and 
paternal ages, in addition to epigenetics, as important 
risk factors for the occurrence of this disorder. Accord-
ingly, assisted reproductive technologies have emerged 
as important alternatives for infertile couples to achieve 
a healthy pregnancy. To date, there is no evidence that 
these technologies may increase the risk of genetic dis-
orders like trisomy 21. Nevertheless, it is highly recom-
mended to pair them with the appropriate genetic studies 
for the early detection of aneuploidies, especially in cases 
where the aforementioned risk factors are prevalent. Mul-
tiple platforms are used to detect aneuploidies in embry-
os, and the NGS is the most widely applied worldwide due 
to its throughput, its ability to precisely detect mosaicism 
and segmental mutation, and its capability of concomitant 
PGT-A and monogenic disorders. Finally, non-invasive 

preimplantation genetic testing has become more rele-
vant and successful, with acceptable detection rates of 
embryonic DNA in blastocel fluid and high concordance 
rates; however, further studies are required to evaluate 
its concurrence with the detection of genetic abnormali-
ties, such as trisomy 21.
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